TA: LEE, Yat Long Luca

Email: yllee@math.cuhk.edu.hk

Office: Room 505, AB1

Office Hour: Send me an email first, then we will arrange a meeting (if you need it).

Tutorial Arrangement:

- (1330 1355/ 15:30 15:55): Problems.
- (1355 1415/ 15:55 16:15): Class exercises.
- (1415 1430/ 16:15 16:30): Submission of Class Exercise via Gradescope.
- (1430 1530/ 16:30 17:30): Late submission period.

1 Line Integrals of Functions

1.1 Line Integrals of Functions over C^1 curves

Let *C* be a C^1 parametric curve and *f* be a function defined on *C*. Then the line integral of *f* over *C* is defined to be

$$\int_C f \, ds = \int_a^b f(\mathbf{r}(t)) |\mathbf{r}'|(t) \, dt$$

Example 1:

Evaluate the line integral

$$\int_C f \, ds$$

where $f(x, y, z) = 2xy + \sqrt{z}$ and C is part of a helix, i.e., $\mathbf{r}(t) = (\cos t, \sin t, t)$ for $t \in [0, \pi]$.

Solution:

Given $\mathbf{r}(t) = (\cos t, \sin t, t)$, we have $\mathbf{r}'(t) = (-\sin t, \cos t, 1)$, hence

$$|\mathbf{r}'|(t) = \sqrt{(-\sin t)^2 + (\cos t)^2 + 1} = \sqrt{2}.$$

Moreover,

$$f(\mathbf{r}(t)) = 2(\cos t)(\sin t) + \sqrt{t} = \sin 2t + \sqrt{t}.$$

Therefore,

$$\int_C f \, ds = \int_0^\pi (\sin 2t + \sqrt{t})\sqrt{2} \, dt = \frac{2\sqrt{2}}{3}\pi^{3/2}$$

Example 2:

Evaluate $\int_C x \, ds$, where C is the parabolic curve $\mathbf{r}(t) = (t, t^2)$ for $t \in [0, 2]$.

Solution:

Given $r(t) = (t, t^2)$, then r'(t) = (1, 2t), hence

$$|\mathbf{r}'|(t) = \sqrt{1+4t^2}.$$

Moreover, in this case, f(x, y) = x, so

x = t.

Therefore,

$$\int_C f \, ds = \int_0^2 t \sqrt{1 + 4t^2} \, dt$$

1.2 Line Integrals over Piecewise C^1 curves

If C is a piecewise C^1 curve joined by segments of C^1 curves $C_1, ..., C_k$ from end to end. Then the line integral of f over C is the sum of the line integrals over each C_i , i.e.,

$$\int_C f \, ds = \sum_{i=1}^n \int_{C_i} f \, ds$$

Example 3:

Evaluate $\int_{C_1 \cup C_2} \sqrt{x + 2y} \, ds$, where C_1 is the line segment from (0, 0) to (1, 0) and C_2 is the line segment from (1, 0) to (1, 2).

Solution:

The line segment C_1 is given by (1 - t)(0, 0) + t(1, 0) = (t, 0) for $t \in [0, 1]$; while the C_2 is given by (1 - t)(1, 0) + t(1, 2) = (1 - t + t, 2t) = (1, 2t) for $t \in [0, 1]$.

Let $\mathbf{r}_1(t)$ denotes the parametrization of C_1 , then $\mathbf{r}'_1(t) = (1,0)$ and hence $|\mathbf{r}'_1|(t) = 1$ for $t \in [0,1]$.

Let $\mathbf{r}_2(t)$ denotes the parametrization of C_2 , then $\mathbf{r}'_2(t) = (0,2)$ and hence $|\mathbf{r}'_1|(t) = 2$ for $t \in [0,1]$.

Then

$$\int_C \sqrt{x+2y} \, ds = \int_{C_1} \sqrt{x+2y} \, ds + \int_{C_2} \sqrt{x+2y} \, ds,$$

where

$$\int_{C_1} \sqrt{x+2y} \, ds = \int_0^1 \sqrt{t} \cdot 1 \, dt$$

and

$$\int_{C_2} \sqrt{x + 2y} \, ds = \int_0^1 \sqrt{1 + 4t} \cdot 2 \, dt$$